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ABSTRACT 

 

This study investigates the impact that the quality of reported earnings has on the accuracy of 

financial analysts’ earnings forecasts.  Extant research indicates that earnings attributes are 

important considerations to users of accounting information.  One such attribute is earnings 

quality; often measured as the magnitude of accruals that do not convert to cash in a timely 

manner, where a poor match of cash flows and accruals indicates low earnings quality.  Such 

accruals could reduce the usefulness of financial reports.  This study uses two measurements of 

forecast accuracy to assess the impact that earnings quality has on the forecast accuracy of 

financial analysts.  Following prior research, one measurement considers the environment in 

which the analyst operates and compares their accuracy to that of their peers.  The second 

compares the individual analyst forecast to the actual reported earnings.  For both measurements 

of accuracy the results show that higher earnings quality is associated with improved forecast 

accuracy. 
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I. INTRODUCTION 

 

esearch shows the important role that the quality of accounting information plays in reducing 

asymmetries between firms and investors (Garcia-Teruel et al., 2009).  Among other resources, 

analysts are known to rely on accounting information to develop earnings forecasts (Barker and 

Imam, 2008).  Existing literature identifies several attributes of reported income that are widely considered to be 

desirable characteristics of a firm’s reported earnings (Barton et al., 2010; Francis et al., 2004).  One such attribute is 

earnings quality which is the aggregate result of the application of various accounting treatments, estimates, and 

assumptions that are made by management.  Literature also finds that earnings quality is negatively associated with 

information asymmetry (Bhattacharya et al., 2003; Francis et al., 2004), and such an asymmetry could be expected 

to have an impact on the ability of analysts to predict earnings.  By reducing these asymmetries higher quality 

earnings also leads to lower costs of capital and debt (Bhattacharya et al., 2003; Francis et al., 2004).  Therefore 

because the quality of reported earnings is important to market participants it is useful to investigate its impact on 

financial analysts. 

 

This study uses two measurements of forecast accuracy described in the literature to examine the effect that 

the quality of reported earnings has on the performance of individual financial analysts.  The first considers the 

environment in which the analyst operates and compares their accuracy to that of their peers (Jacob et al., 1999).  

The second measurement compares the individual analysts’ forecast to actual report earnings (Bae et al., 2008).  

Because reported financial accounting information is intended for users outside of the company, and because 

earnings is a “premier source” of such information (Francis et al., 2004), it is reasonable to assume that the quality 

of earnings could affect the decisions and outcomes of financial statement users.  In fact Lobo et al. (2012) find that 

the services of financial analysts become more valuable to investors and in greater demand as earnings quality 

diminishes.  However, it is also true that managers have incentives to manipulate earnings (Bauman & Shaw, 2006; 

Brown, 2001; Graham et al., 2005; Matsumoto, 2002); a practice that could lead to lower quality earnings which are 

sometimes characterized as the result of management’s opportunistic use of accruals with the intent to mislead users 

(Dechow & Dichev, 2002), hereafter DD02.  There have been several prior examinations of the relationship between 

various earnings attributes and financial analyst forecasts (Lobo et al., 2012; Bryan & Tiras,  
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2007; Eames & Glover, 2003; Helbok & Walker, 2004; Mensah et al., 2004), however the relationship between 

earnings quality and analyst forecast accuracy is largely unexamined.
1
 

 

The literature contains several approaches to measuring earnings quality.  One such approach is to measure 

how closely cash flows track with changes in working capital (DD02).  In their model, any changes in working 

capital that cannot be explained by cash flows are considered to be the result of lower quality accruals.  Because 

earnings quality informs investors about the mapping of accounting earnings into cash flows, poor quality earnings 

reports will increase information risk by weakening that connection (Francis et al., 2005).  Furthermore, research 

finds that earnings measurements are more value relevant when they directly and quickly capture information about 

firms’ cash flows (Barton et al., 2010).  Using the DD02 method, this study examines the association between 

earnings quality and financial analysts’ earnings forecast accuracy.  The test results indicate that higher quality 

earnings enhance the accuracy of analysts’ earnings forecasts.  The results of this study will be useful to market 

participants by providing investors with further understanding of how accounting reports are processed by financial 

statement users; particularly by financial analysts. 

 

The remainder of this paper is organized as follows.  Part II provides a review of relevant prior literature 

and describes the hypothesis development.  Part III describes the research method, variable descriptions, and data 

sample.  Part IV provides the test results, and Part V includes a summary and conclusion. 

 

II. LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT 

 

Literature Review 

 

Forecast accuracy literature finds that differences in financial analysts’ earnings forecasts are mostly 

attributable to analyst, firm, industry, and country level attributes.  Following is a review of the relevant forecast 

literature that provides these alternative explanations of the variability in analyst performance. 

 

Analyst Attributes 

 

Several studies find that forecast accuracy is a function of analyst innate ability, firm-specific experience 

(Clement, 1999), general experience (Mikhail et al., 1997), forecast horizon, individual experience, and prior 

accuracy (Clement, 1999; Jacob et al., 1999; Mikhail et al., 1997; Raedy et al., 2006).
 2

  Burgstahler and Eames 

(2003) find that although firms engage in earnings management (Burgstahler & Dichev, 1997; Guttman et al., 2006; 

Hayn, 1995; Jacob & Jorgensen, 2007; Kerstein & Rai, 2007; Roychowdhury, 2006), analysts are unable to 

sufficiently predict such manipulation.  This could result in lower accuracy because the analyst’s expectation of 

earnings management often causes them to reduce their estimates beyond actual earnings.  In other accuracy 

literature, Kim and Parther-Kinsey (2010) test whether analysts’ earnings forecast errors are a function of analysts’ 

use of a proportionate cost model (PCM) in which the growth rate for both expenses and sales are assumed to be 

equal.  Their study finds that such an assumption leads to forecast errors when expenses change at a different rate 

than sales. 

 

Firm, Industry, and Country Level Attributes 

 

Several approaches exist in prior literature to study firm level attributes.  For instance, Dowdell (2010) 

investigates whether analyst accuracy is a function of a firm’s life-cycle.  That study finds that analysts have more 

                                                           
1 Eames and Glover (2003) study the relationship between analyst earnings forecast errors and earnings predictability.  They document 

associations between the level of earnings and both forecast errors and earnings predictability and find that optimism is not deliberate on the part 

of analysts.  Helbok and Walker (2004) study the effect of conservatism on analyst performance and find that conservative accounting causes 
analysts to initially issue forecasts that are focused on permanent earnings.  Mensah et al. (2004) find that conservatism is associated with higher 

forecast errors and dispersion.  Bryan and Tiras (2007) also use forecast dispersion as a measurement of information asymmetry and find that 

when information asymmetry is high, analysts rely less on accounting information. 
2 Jacob et al. (1999) define innate ability as a “dispositional” analyst attribute that indicates high aptitude.  They find analyst firm-specific 

experience to be insignificant in explaining analyst performance after controlling for innate ability, yet find, at the brokerage level, that analyst 

work place characteristics are a significant factor.  They also suggest that those analysts that survive longest at a firm necessarily have natural 
(innate) talent, and that it is that talent, not firm nor task specific experience, that explains their performance. 
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difficulty when forecasting earnings for mature firms than they do for growth firms.  Additionally their results 

indicate that turnaround firms are the most difficult for which to predict earnings.
3
  International studies such as 

Ashbaugh and Pincus (2001) investigate whether the variation in accounting standards across national boundaries 

relative to IFRS has an impact on the ability of financial analysts to accurately forecast non-U.S. firms’ earnings.  

They find that the convergence in firms’ accounting policies resulting from the adoption of IFRS reduces analyst 

forecast errors.  Uncertainty about financial and accounting information under internationally diverse accounting 

regimes is also shown to lead to less accurate forecasts (Ashbaugh & Pincus, 2001; Bae et al., 2008, Tan et al., 

2011).  The effect of regulation on analyst performance also occupies an important segment of existing literature.  

Libby et al. (2008) finds that an optimistic/pessimistic pattern exists early and late in the firm quarter.  They find 

that this pattern is due to relationships with management which have not completely disappeared with recent 

regulation.  Mohanram and Sunder (2006) study the methods by which financial analysts attempt to retain their 

accuracy in the post-Regulation FD environment.
4
  They find that analysts are making a greater effort to develop 

information by reducing their following of well-followed firms and increase efforts for those that were less covered 

prior to the regulation.  The results suggest that larger brokerages lost their advantage in the post-Regulation FD 

period due to the fairer distribution of information required buy Regulation FD.
5
  La Porta et al. (1998) show that 

common law countries provide superior minority shareholder protection compared to those with civil law systems.  

Building on those results, Barniv et al., (2005) test the ability of analyst characteristics to explain relative forecast 

error across legal origins (common law versus civil law).  Their results suggest that analysts with superior 

characteristics will outperform those analysts in common-law countries because of the lowered incentives that exist 

when investor protections are low; thus establishing a link between legal and financial reporting environments and 

analysts' forecast behavior. 

 

Hypotheses Development 

 

Existing literature provides several reasons to expect earnings quality to have an effect on the accuracy of 

financial analysts’ earnings forecasts.  Prior studies show that reported earnings are a principal source of firm-

specific information to interested parties (Francis et al., 2004), that managers themselves view earnings as the key 

metric evaluated by investors and analysts (Graham et al., 2006), and that investors rely on earnings more than any 

other summary measure of firm performance including dividends, cash flows, or variants of earnings such as 

EBITDA (Francis et al., 2004).  The user uncertainty that could be caused by low quality earnings may reduce 

analyst performance.  For example, such uncertainty about a firm’s economic future increases dispersion patterns of 

analyst forecasts (Barron & Stuerke, 1998; Imhoff and Lobo, 1992; Payne & Robb, 2000).  Existing research also 

documents an association between analyst performance and other earnings attributes.  Helbok and Walker (2004) 

and Mensah et al. (2004) show that increased accounting conservatism is associated with greater forecast errors.
6
  

Mensah (2004) also indicates that greater forecast errors and wider forecast dispersion result from decreases in 

earnings predictability.  In another example of the value that market participants place on the quality of reported 

earnings, Francis et al. (2004) find that firms with the least favorable values for each of several earnings attributes 

that they examine (including earnings quality) have higher costs of equity than do firms with the most favorable 

values.  There is also substantial support in the literature for the notion that higher earnings quality has a positive 

effect on stock price.  Boulton et al. (2011) examine the impact of country-level earnings quality on IPO prices and 

find that IPOs are underpriced less in countries where public firms produce higher quality earnings information, thus 

highlighting the favorable effect that high earnings quality has on price.  Additionally, Feng et al. (2011) find that 

financial reporting quality positively affects investment efficiency.  Research also describes further motivation on 

the part of managers to produce higher quality earnings reports.  Gaio and Raposo (2011) find a positive relationship 

between firm valuation and earnings quality, particularly for 1) firms with greater investment opportunities and 

                                                           
3 Turnaround firms are defined by Dowdell (2010) as those firms that either 1) are expected to have negative abnormal future earnings but less 

negative as time goes on, or 2) have temporarily low earnings. 
4 Regulation Fair Disclosure ("Reg FD") requires firms to disseminate material information to all investors at the same time.  The Securities and 

Exchange Commission stated that the objective of FD is to eliminate the practice of selective disclosure to preferred analysts.  Regulation FD 

went into effect on October 23, 2000. 
5 See Barniv et al. (2009) for a discussion of the effects of regulation FD and subsequent regulations on analysts’ stock recommendations and on 

stock returns. 
6 Their measure of conservatism is described as an accounting-based aggregate measure developed by Penman and Xiao-Jun (2002).  It is defined 
as the unrecorded net assets resulting from using LIFO inventory method and expensing R&D and advertising expenditures. 
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having more need for external finance, and 2) for firms in low investor protection countries.
7
  Their results strongly 

suggest that higher quality reports are valued to a greater degree by the financial markets and that investors require a 

premium for the information risk associated with lower-quality earnings.  In fact Agnes Cheng et al. (2012) find a 

positive association between abnormal accruals and mispricing of securities, pointing to the need for reliable 

earnings reports.
8
 

 

The literature above provides the expectation that higher earnings quality (by providing analysts with more 

useful information) would enable analysts to produce more accurate forecasts.  However the earnings management 

literature provides for the possibility that lower quality earnings may be associated with accurate forecasts.  The 

results of these studies (Burgstahler & Dichev, 1997; Burgstahler & Eames, 2003; Jacob & Jorgensen, 2007; 

Kerstein & Rai, 2007; Roychowdhury, 2006) suggest that managers’ reliance on low quality earnings to meet 

analyst forecasts might result in less differences between forecasts and reported earnings.  Put another way, as the 

firm manipulates accounting information to adjust reported earnings closer to the forecast, earnings quality would 

decrease.  Consequently the difference between the forecast and actual reported earnings decreases, making the 

forecasts appear to be accurate.  Although this scenario seems less likely, it is considered in the hypotheses 

described below. 

 

Hypotheses 

 

It is reasonable to assume from the literature discussed above that the quality of reported earnings will 

affect financial analyst forecast accuracy, however the direction of that effect remains unclear in the literature.  

Therefore the hypotheses are stated in the null form.  To investigate the impact of earnings quality on financial 

analyst forecast accuracy two hypotheses are tested. 

 

The first hypothesis considers whether earnings quality has an impact on individual analyst forecast 

accuracy relative to other analysts.  Literature shows that each individual analyst is positioned differently and 

performs (relative to other analysts) based on, among other things, the legal and financial reporting environment in 

which they operate (Barniv et al., 2005), their individual work place environment (Jacob et al., 1999), and their 

innate ability and task-specific experience (Clement et al., 2007).  Because individual analysts bring unique sets of 

background and expertise to the forecasting task, it is anticipated that earnings quality accounts for some of the 

differences in accuracy among individual analysts.  To investigate the influence of earnings quality on the accuracy 

of the individual the analyst’s forecast compared to all other analysts’ forecasts for the same firm and year, the 

following hypothesis, stated in the null form, is tested. 

 

H1: The quality of reported earnings is not associated with individual financial analyst forecast accuracy 

relative to their peers. 

 

The second hypothesis considers whether the quality of reported earnings affects analysts’ forecasts relative 

to the actual reported earnings of the firm.  To investigate this influence the following hypothesis, stated in the null 

form, is tested. 

 

H2: The quality of reported earnings is not associated with financial analyst forecast accuracy relative to 

reported earnings. 

 

III. RESEARCH METHOD 
 

Dependent Variables 
 

The effect of earnings quality on analysts’ forecast accuracy is tested using two specifications of accuracy.  

The first is a measurement of relative forecast errors (RFE).  This analyst-specific forecast error used in the accuracy 

specification uses the absolute difference between the EPS forecast and the actual EPS for the specific firm and year. 

                                                           
7 The Gaio and Raposo (2011) study uses an aggregate earnings quality measure based on earnings quality, persistence, predictability, 

smoothness, value relevance, timeliness, and conservatism. 
8 Their main test of mispricing relates current accruals to future returns. 
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itit EPSActualEPSForecast 

Relative Forecast Error 

 

To construct the RFE variable, the first step is to calculate the absolute forecast error (AFE) as follows. 

 

Absolute Forecast Error = itjitj EPSActualEPSForecast   (1) 

 

where Forecast EPS is the individual analyst i’s most recent earnings per share forecast in the twelve months prior to 

the earnings announcement for firm j and time t, Actual EPS is the reported earnings per share of firm j for time t, i 

is the individual analyst, j represents the firm, and t is the fiscal year of the firm’s earnings announcement date. 

 

The next step is to construct the mean absolute forecast error (MAFE).  Following prior literature (Barniv 

et al., 2005; Jacob et al., 1999), accuracy is measured by using the relative forecast error (RFE) and is defined as the 

absolute forecast error above (AFE) divided by the mean absolute forecast error (MAFE) of all analysts’ consensus 

forecast measured as follows: 

 

Mean Absolute Forecast Error = MAFE = 

  (2) 

 

Finally, RFE is calculated by dividing AFE by MAFE and subtracting 1 from the ratio.  Jacob et al. (1999) 

point out that by subtracting 1 from the ratio, forecasts of average accuracy will result in an RFE value of zero.  To 

aid interpretation, the resulting values are multiplied by -1 so that the most accurate forecasts take on a value of 1, 

forecasts of average accuracy remain zero, and lower than average accuracy will be negative: 

 

RFE = (AFEitj / MAFEtj)-1 (3) 

 

Absolute Forecast Error 

 

To further investigate the impact of earnings quality on analyst forecast accuracy; additional tests are 

performed following Bae et al. (2008) and Tan et al. (2011).  The second dependent variable used (AFEP) is the 

absolute forecast error scaled by the prior year’s price.  It is a measurement of the accuracy of the earnings forecast 

issued by analyst i for firm j for year t. 

 

)100(
||

1,





tj

jtijt

ijt
PRICE

AF
AFEP  (4) 

 

AFEP is computed as the absolute value of the forecast error scaled by the most recent stock price in the previous 

year and then multiplied by -100 to allow for a more intuitive interpretation; as accuracy increases, AFEP increases. 

 

Earnings Quality Variables 

 

The DD02 specification of earnings quality measures whether current accruals are associated with prior, 

current, or next period cash flows.  Any accruals not associated with those cash flows are thought to reduce the 

quality of earnings.  This method is used in prior work to explore the link between earnings attributes and cost of 

equity (Francis et al., 2004).  Any deterioration in reliability of earnings could frustrate users regardless of whether 

the loss of reliability is due to intentional or unintentional errors.  DD02 point out that unlike other extant 

measurements that assume earnings quality to be the result of intentional manipulation by management, this 

approach is indifferent to whether errors are intentional or not. Such an approach is consistent with the purpose of 

this study.  By capturing the net effect of accounting application on the timing of accrual maturity, the model  
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provides the aggregate effect of accounting policies and choices which is more relevant to assessing analysts’ 

response.  Therefore this study uses the unmodified DD02 specification to measure earnings quality.
 9

 

 

The dependent variable in the model is the change in working capital (ΔWC) and is computed as ΔAR + 

ΔInventory - ΔAP - ΔTP + ΔOther Assets-net, where AR is accounts receivable, AP is accounts payable, and TP is 

taxes payable.  Using Compustat nomenclature, ΔWC is calculated specifically as Compustat item RECCH 

(Accounts Receivable, Decrease or Increase) + INVCH (Inventory, Decrease or Increase) + APALCH (Accounts 

Payable and Accrued Liabilities, Increase or Decrease) + TXACH (Income Taxes Accrued, Increase or Decrease) + 

AOLOCH (Other Assets and Liabilities, Net Change).  All variables are scaled by average assets: 

 

ΔWCjt = α + β1CFOj,t-1 + β2CFOjt + β3CFOjt+1+ vjt (5) 

 

where ΔWCjt is the change in working capital for firm j from year t-1 to year t, CFOjt is firm j’s cash flow from 

operations for firm j in year t, and vjt represents the residuals for firm j, year t. 

 

The residuals resulting from the estimation of the model represent changes in working capital from accruals 

that have not converted to cash flows in the three year window (t-1, t, or t + 1).  According to DD02 earnings quality 

could be estimated from the model in two different ways; 1) the standard deviation of residuals of a time series of 

estimates could be used as a proxy for earnings quality (DDSD), and 2) the absolute value of the residual in the 

current year estimation (DDCR).
10

 

 

It is reasonable to expect different results between the two variables.  DDCR represents the level of 

earnings quality in a single year while DDSD measures the historical pattern of the distribution of the levels over 

five years prior to the earnings announcement.  Because analysts are show in the literature to be more accurate over 

shorter horizons (Barniv et al., 2005; Clement, 1999, Jacob et al., 1999), in a longer horizon an analyst may draw 

information from the more historical measurement (DDSD).  On the other hand, under shorter horizons the single 

year measurement (DDCR) could be more useful.  When using the standard deviation method, the model is typically 

estimated using a rolling time series of estimations providing firm and year specific estimated residuals.  The 

earnings quality measurement is then given as the standard deviation of the residuals per firm-year.  A large standard 

deviation would indicate that a large portion of the variability in the change in working capital is not explained by 

one period lagged (β1), current (β2), or one period forward (β3) cash flow.  The procedure results in an earnings 

quality measurement over years and represents historic smoothness (or volatility) in earnings quality for the firm 

over that period.  This study uses both DDSD and DDCR as the earnings quality variable.  For each method, pooled 

cross-sectional regressions are estimated providing an earnings quality variable for each reported earnings value in 

the sample.  Finally, because earnings quality information must be available to analysts for it to have an impact on 

their performance, DDSD and DDCR are lagged by one year. 

 

Control Variables 
 

Prior literature provides guidance on controls that are relevant to analyst accuracy. For example, forecast 

accuracy is positively associated with the size of the analysts’ employer, but negatively associated with both the 

forecast horizon (Clement, 1999; O’Brien, 1990; Jacob et al., 1999) and the number of firms and industries followed 

(Clement, 1999).  Forecast performance is also known to improve with the individual analyst’s prior forecast 

accuracy (Brown, 2001; Clement et al., 2007; Park & Stice, 2000).  Analyst firm-specific experience is another 

popular control in extant literature (Hong & Kubik, 2003).  For instance, Cowen (2006) uses firm specific 

experience to study forecast optimism differences among various types of analysts.  Similarly, Barniv et al. (2005), 

Clement (1999), and Jacob et al. (1999) control with firm specific measures of experience while Clement (1999) 

adds a general experience variable.  Clement et al. (2007), while controlling for general and firm specific 

experience, also includes industry experience and task-specific experience controls.  Jacob et al. (1999) include 

                                                           
9 Modifications of DD02 such as McNichols (2002) include growth in revenue to capture performance, and PPE (Francis et al., 2005) to expand 
the model to include depreciation.  Typically total current accruals (TCA) is estimated as: TCAjt = α + β1CFOj,t-1 + β2CFOjt + β3CFOj,t+1 + β4 

ΔREVjt + β5PPEjt + vjt.  Dechow et al., (2010) state that because the model decomposes the standard deviation of the residual into firm-level 

“innate” estimation errors and “discretionary” estimation errors, managerial choices could be examined which is not the purpose of DD02. 
10 DD02 in their footnote 6 state that an alternative measure of accrual quality at the firm-year level is absolute value of the residual for that year. 
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controls for what they refer to as “situational” differences among analysts.  These are differences that result from the 

demands and environment of the particular brokerage house.  To control for these differences Barniv et al. (2005) 

and Jacob et al. (1999) use variables for brokerage size, specialization, and two controls for employee turnover.  

Prior work also controls for the frequency of forecasts made by the analyst for a particular company and earnings 

number (Clement et al., 2007; Jacob et al., 1999) and for individual analyst specialization (Jacob et al., 1999).  

However some prominent studies find no evidence that analysts learn and improve with experience (Clement et al., 

2007).  Furthermore Cowen et al. (2006) find that experience is not significant to forecast over-estimates in the 

shorter run (for 0-90 days) but significantly increases over-estimates for horizons longer than 90 days.  They 

interpret these findings to mean that the longer an analyst covers a company, the less objective they are about bad 

news relative to other analysts; likely because they either become confident in the management team or rely more on 

management’s assessment.  The control variable definitions are presented next, grouped according to the model in 

which they are utilized. 
 

RFE Control Variable Definitions 
 

Because prior research finds that work place factors (situational variables) are significant for explaining 

variation in earnings forecast accuracy (Barniv et al., 2005; Clement, 1999; Jacob et al., 1999), included are controls 

for horizon, analyst firm-specific experience, frequency of forecasts made by the analyst for a particular firm and 

period, analyst specialization, brokerage size, brokerage specialization, analyst turnover at the analyst’s brokerage 

firm, and finally a control for whether a change in the analyst has occurred at a particular brokerage that follows a 

specific firm. 
 

Prior research (Brown, 2001; Clement and Tse, 2003; Jacob et al., 1999) find that longer forecast horizons 

are associated with less accurate the forecasts.  Following Jacob et al. (1999) the forecast horizon control (HORIZ) 

captures the number of days between the forecast issue date and the earnings announcement date.  Barniv et al. 

(2005) and Jacob et al. (1999) include the analyst’s firm-specific experience as a control in their forecast accuracy 

models.  However several studies find that experience gained through feedback does not improve analyst 

performance (Clement et al., 2007; Jacob et al., 1999; Mikhail et al., 1997).  The variable FIRMEXP is included to 

control for the analyst’s experience specific to a given firm.  Following Jacob et al. (1999), FIRMEXP is measured 

as the natural logarithm of the number of periods that the analyst has issued forecasts for a specific company prior to 

the current period. 
 

Jacob et al. (1999) include and find significance for “situational” based differences in analyst performance.  

They find that the working environment and other structural differences among brokerage firms.  Other prior 

research has also included these controls to examine accuracy as well (Barniv et al., 2005).  These situational 

differences are 1) BSIZE which is broker size defined as the percentile ranking of the total number of analysts 

employed by the particular analyst’s brokerage in the year of the forecast, relative to other brokerage houses.  BIND 

represents the broker industry percentage defined as the percentage of an individual analyst's brokerage house 

analysts that follow a specific company's industry in the year that the forecast was issued.  PIN is the proportion of 

new analysts entering from outside the brokerage to the total number of analysts who worked for the brokerage 

during the year of the forecast.  Finally POUT is defined as the proportion of analysts who left the brokerage to the 

total number of analysts who worked for the brokerage both during the year of the forecast. 
 

Other individual analyst characteristic controls used in prior work (Barniv et al., 2005; Clement, 1999; 

Jacob et al., 1999) are also included in the accuracy model.  These include FREQ which captures the number of 

forecasts made by the individual analyst for a specific firm and period; COMP which is the number of firms 

followed by the analyst in the year in which the specific forecast is issued; SPEC that equals the percentage of the 

firms followed by the individual analyst that are in the same industry as is the firm being forecast; and CHANGE 

which controls for whether there has been a change in the analyst that follows a particular firm at that particular 

brokerage for the earnings period for which the forecast is made. 
 

Regulation Control 
 

In late 2000, the SEC put into place regulations designed to inhibit the practice of management favoring 

certain analysts by disclosing useful information to them while withholding it from others.  Regulation Fair 
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Disclosure (Reg FD) was intended to insure equal access to all analysts.  Prior to Reg FD, analysts may have 

resisted issuing unfavorable recommendations to investors because it may have resulted in their loosing access to 

management (Barniv et al., 2009).  Reg FD was intended to take this constraint away by disallowing selective 

disclosure.  Any effect of Reg FD on earnings quality could be expected to occur after 2000.  Subsequent to FD, two 

other noteworthy actions with regard to analysts were taken by the regulators.  First, in response to concerns that 

there was a conflict of interest between analysts and the investment banking business of their respective brokerages, 

the regulators responded with NASD Rule 2711 (Research Analysts and Research Reports) to discourage such 

conflict.  Second, in late 2002 a settlement by the SEC was announced stemming from events which involved 

analysts from several investment banks purposely issuing misleading advice to public investors in order to benefit 

institutional clients.  The “Global Research Analyst Settlement” took effect in early 2003 and required reforms in 

the methods investment banks used to distribute investing information.  If these regulations in fact had their intended 

affects (more consistent disclosure of information and a reduction of conflicts of interest) it is reasonable to assume 

that the analyst community would benefit with better information on which to base their forecasts.  Therefore it is 

anticipated that the regulations would enhance analyst performance and result in more accurate earnings forecasts.  

To capture this effect a dummy variable (REG) is included that is set to 1 if the firm year is later than 2000, 

otherwise zero. 

 

Other Controls 

 

Year indicator variables (YEAR) are included to control for time series effects.  Also included are industry 

indicator variables (IND) based on the I/B/E/S SIG industry code scheme.
11

 

 

AFEP Control Variable Definitions 

 

The dependent variables HORIZ, BSIZE, REG, FIRMEXP, IND, and YEAR are retained from the RFE 

tests above.  Following Tan et al. (2011) market value of equity to book value of equity (MTB) of firm j for year t is 

included.  Examining the impact of IFRS adoption, they find a positive effect of MTB on accuracy.  Following Bae 

et al. (2008), several other controls (DIVERSITY, SIZE, GENEX, and NFIRM) described next are included for the 

tests of AFEP. DIVERSITY is the diversity of analysts’ forecasts for firm j in year t computed as the ratio of the 

standard deviation of forecasts for firm j in year t to the product of the absolute value of the consensus forecast and 

the square root of the number of analysts following firm j in year t.  SIZE is a control variable representing the size 

of firm j measured as the natural log of total assets in period t for firm j.  No_of_Analysts is the number of analysts 

covering firm j in year t. GENEX is analyst i’s general experience computed as the number of years between analyst 

j’s first forecast in I/B/E/S and their current forecast in year t. NFIRM is the number of firms followed by the analyst 

in the year in which the forecast is issued. 

 

Models 

 

Relative Forecast Error (RFE) 

 

The first set of tests uses RFE as the dependent variable and controls defined above.  As discussed above, 

the model is tested with two different lagged measurements of earnings quality based on DD02.  The first is DDSD, 

which is the standard deviation of the most recent five years of residuals produced by the DD02 for each firm j and 

year t; 

 

RFE = α +β1DDSDtj + β2REG + β3HORIZitj + β4FIRMEXPitj + β5FREQitj + β6COMPitj + β7SPECitj +  

β8BSIZEitj+ β90BINDitj + β10PINitj + β11POUTitj + β12CHANGEitj + β13INDit + β14YEARtj + e (5) 

 

Alternatively the model is tested using DDCR as the earnings quality measurement.  DDCR represents the 

residuals produced by the DD02 model for each firm j for a single year; 

 

                                                           
11 The industry segments included from the I/B/E/S SIG codes are Health Care (default), Non-durable goods, Service Industries, Durable Goods, 
Energy, Transportation, Technology, Basic Industries, Capital, and Other. 
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RFE = α + β1DDCRtj + β2REG + β3HORIZitj + β4FIRMEXPitj + β5FREQitj + β6COMPitj + β7SPECitj +  

β8BSIZEitj+ β90BINDitj + β10PINitj + β11POUTitj + β12CHANGEitj + β13INDit + β14YEARtj + e (6) 

 

where the individual analyst is given as i, firm is designated by j, t denotes the fiscal year at the time of the earnings 

announcement date.  All other variables are as described above. 

 

Absolute Forecast Error Scaled by Price (AFEP) 

 

The second set of tests uses AFEP as the dependent variable.  As with RFE, the tests are performed using 

both DDSD and DDCR as the earnings quality variable.  The impact of DDSD and DDCR on AFEP is examined by 

estimating the following models; 

 

AFEPitj = α + β1DDSDtj + β2DIVERSITYtj + β3SIZEtj + β4MTBtj + NO_OF_ANALYSTStj + β6FIRMEXitj + 

β7GENEXit + β8BSIZEtj + β9NFIRMit + β10HORIZitj + β11INDjt  + β12YEAR + e (7) 

 

AFEPitj = α + β1DDCRtj + β2DIVERSITYtj + β3SIZEtj + β4MTBtj + NO_OF_ANALYSTStj + β6FIRMEXitj  

+ β7GENEXit + β8BSIZEtj + β9NFIRMit + β10HORIZitj + β11INDjt  + β12YEAR + e (8) 

 

where AFEP is the absolute forecast accuracy scaled by the most recent stock price in the previous year.  It is 

computed as the price scaled absolute difference between the last forecast issued by analyst j before the earnings 

announcement date and the actual earnings for firm j in year t multiplied by -100.  All other variables are as 

described above. 

 

Sample Data 

 

The models require the use of financial analyst performance data, and company level reported account 

balances from annual financial statements.  All financial accounting reported balances are obtained from the 

Standard & Poor's Research Insight Compustat 2010 North American Annual Industrial and Research files.  The 

financial analyst data is obtained from the December, 2010 Institutional Brokers' Estimate System International 

(I/B/E/S) detail files.  After combining the I/B/E/S analyst data with the Compustat accounting data, omitting 

financial and utilities industries, eliminating all firm-year observations for which there was insufficient data, limiting 

the sample to contain only those observations of the most recent forecasts for each firm year observation (Barniv et 

al., 2005; Jacob et. al., 1999), and finally eliminating firm-year observations that have a following of less than two 

analysts, the final sample contains 604,316 firm-year-forecast observations, including 799 unique brokerages, 9,821 

individual analysts, and 4,877 firms. 

 

Table 1 provides descriptive statistics for the RFE tests.  For RFE, the mean is 0.387 and the median is 

0.523.  The maximum value of 1 for RFE indicates that there is at least one analyst in the sample that had a zero 

error (a zero individual analyst error would produce an accuracy value of 1 using the RFE model above).  DDSD is 

the lag of the standard deviation of a rolling time-series of residuals produced by estimation of the DD02 earnings 

quality model.  The minimum value of zero indicates that for at least one firm in the sample residuals were 

unchanged for the five year estimation period.  This suggests that earnings quality remained stable over the years 

that were measured.  DDCR has a minimum value of zero and a mean of 0.038.  Because the variable is equal to the 

lag of the absolute value of the residuals produced from the DD02 regression, lower values indicate higher quality 

accruals.  The minimum value of zero suggests that for at least one firm in the sample no accruals were made that 

did not convert to cash flows within the model’s three year period.  With regard to control variables, consistent with 

prior research (Barniv et al., 2005; Clement, 1999; Jacob et al., 1999) the analyst characteristic variables are 

adjusted to the mean values to make them consistent with the formulation of the dependent variable, however by 

convention, are reported at their values prior to subtracting the mean from each variable.  HORIZ is measured as the 

number of days prior to the earnings announcement date that the most recent the forecast was made.  The horizon for 

the forecasts in the sample ranges from zero to 365 days, with the mean being approximately 202 days.  This 

indicates that the average most recent forecast in the sample is approximately 6.5 months prior to announcement.  

FIRMEXP is the experience of the analyst measured as the natural log of the number of periods the analyst provided 

forecasts for that firm.  Because the natural log of 1 is zero, the minimum value of zero reported in the table suggests 
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that the minimum number of years an analyst in the sample provided a forecast for the particular firm is one.  The 

maximum value of 2.57 indicates that the maximum number of periods that an analyst provided forecasts for of a 

particular firm is approximately thirteen (the natural log of 13 is 2.56).  REG is an indicator variable and 

appropriately has a minimum value of zero and a maximum value of one.  The remaining control variables values 

are consistent with expectations. 

 

IV. RESULTS 

 

Descriptive Statistics for RFE Models 

 

Table 1 provides descriptive statistics for the RFE tests.  For RFE, the mean is 0.387 and the median is 

0.523.  The maximum value of 1 for RFE indicates that there is at least one analyst in the sample that had a zero 

error (a zero individual analyst error would produce an accuracy value of 1 using the RFE model above).  DDSD is 

the lag of the standard deviation of a rolling time-series of residuals produced by estimation of the DD02 earnings 

quality model.  The minimum value of zero indicates that for at least one firm in the sample residuals were 

unchanged for the five year estimation period.  This suggests that earnings quality remained stable over the years 

that were measured.  DDCR has a minimum value of zero and a mean of 0.038.  Because the variable is equal to the 

lag of the absolute value of the residuals produced from the DD02 regression, lower values indicate higher quality 

accruals.  The minimum value of zero suggests that for at least one firm in the sample no accruals were made that 

did not convert to cash flows within the model’s three year period.  With regard to control variables, consistent with 

prior research (Barniv et al., 2005; Clement, 1999; Jacob et al., 1999) the analyst characteristic variables are 

adjusted to the mean values to make them consistent with the formulation of the dependent variable, however by 

convention, are reported at their values prior to subtracting the mean from each variable.  HORIZ is measured as the 

number of days prior to the earnings announcement date that the most recent the forecast was made.  The horizon for 

the forecasts in the sample ranges from zero to 365 days, with the mean being approximately 202 days.  This 

indicates that the average most recent forecast in the sample is approximately 6.5 months prior to announcement.  

FIRMEXP is the experience of the analyst measured as the natural log of the number of periods the analyst provided 

forecasts for that firm.  Because the natural log of 1 is zero, the minimum value of zero reported in the table suggests 

that the minimum number of years an analyst in the sample provided a forecast for the particular firm is one.  The 

maximum value of 2.57 indicates that the maximum number of periods that an analyst provided forecasts for of a 

particular firm is approximately thirteen (the natural log of 13 is 2.56).  REG is an indicator variable and 

appropriately has a minimum value of zero and a maximum value of one.  The remaining control variables values 

are consistent with expectations. 
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Table 1:  Descriptive Statistics for Tests of RFE 
Variable n Mean Std Dev Median Minimum Maximum 

Dependent Variable 

RFE 
 

604,273 0.387 0.572 0.523 -62.65 1.00 

Earnings Quality Variables 

DDSD 
 

582,445 0.003 0.010 0 0 0.191 

DDCR 
 

599,825 0.038 0.041 0.024 0 0.472 

Control Variables 

HORIZ 
 

604,316 202.0 103.0 196 0 365.0 

FIRMEX 
 

604,316 0.951 0.708 1.10 0 2.57 

FREQ 
 

604,316 7.449 3.404 7.00 1.00 12.0 

COMP 
 

604,316 10.35 8.777 9.00 1.00 44.0 

SPEC 
 

604,316 0.669 0.303 0.78 0.028 1.00 

BSIZE 
 

604,316 87.70 18.00 96.00 15.00 99.0 

BIND 
 

604,316 0.248 0.218 0.167 0.029 1.00 

PIN 
 

604,316 0.093 0.124 0.059 0 0.733 

POUT 
 

604,316 0.119 0.208 0.063 0 1.00 

CHANGE 
 

604,316 0.101 0.302 0 0 1.00 

REG   604,316 0.484 0.50 0 0 1.00 

Individual analyst characteristics data is reported prior to subtracting the mean from each variable which results in a zero mean.  n indicates the 

number of observations for each of the variables.  RFE is the quotient of the absolute forecast error for analyst i in period t for company j divided 

by the mean absolute forecast error, then reduced by 1; (AFEitj/MAFEtj)-1 and then multiplied by -1.  HORIZ is the number of days between the 
forecast issue date and the earnings announcement date. CHANGE is a dummy variable that takes the value 1 if there has been a change in 

analyst following firm j for a particular brokerage in period t.  FIRMEXP is the natural log of the number of years that analyst i has issued 

forecasts for firm j prior to year t. COMP is the number of firms followed by the analyst in the year in which the forecast is issued. Spec is the 
percentage of the firms followed by analyst i that are in the same I/B/E/S industry classification as firm j.  FREQ is the number of forecasts made 

by analyst i for firm j for period t. BSIZE is a percentile ranking of the number of analysts working at the same brokerage as analyst i, relative to 

other brokerages. BIND is the percentage of analysts that work at analyst i's brokerage that are following firm j's industry in the year t in which 
the forecast was made. PIN is the proportion of new analyst assignments from outside the brokerage to the total number of analysts who worked 

for the brokerage during the year t in which the forecast was issued. POUT is the proportion of analysts that left the brokerage to the total number 

of analysts who worked for the brokerage during the year t in which the forecast was issued.  DDSD represents the lag of the standard deviation 
of the firm's level of earnings quality over the prior five consecutive years; DDCR represents the lag of the level of earnings quality for the firm 

in the year t.  REG is a dummy variable that takes on a value of 1 if period t is later than year 2000. 

 

Correlations for RFE Test Variables 

 

Table 2 reports the correlations among variables for the REF data. The table shows Pearson correlations 

above the diagonal and Spearman correlations below, each producing similar results.  All correlations are significant 

at the 1% level unless otherwise indicated in the table.  As expected from prior research, HORIZ is significantly 

correlated with relative forecast errors RFE.  Recall that decreases in RFE indicate decreases in accuracy.  Note that 

the negative association with RFE suggests that as forecast horizons increase, the relative forecast errors 

specification of accuracy decreases.  As described above, higher values of DDSD and DDCR denote lower earnings 

quality.  Therefore it is interesting to note that both test variables (DDSD and DDCR) are significantly correlated (p 

<.0001) with RFE respectively at -0.055 and -0.045 for Pearson and at -0.075 and -0.037 for Spearman, suggesting 

that low quality earnings are correlated with lower relative accuracy.  For both Pearson and Spearman, all of the 

analyst characteristics variables are significantly associated with RFE at the 1% level. 
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Table 2:  RFE Test-Pearson/Spearman Correlations 

 
RFE DDSD DDCR Horiz Firmex Freq Comp Spec Bsize Bind Pin Pout Change Reg 

RFE 1.000 -0.055 -0.045 -0.362 0.021 0.038 0.006 0.032 0.030 -0.013 0.010 0.004 -0.082 0.067 

DDSD -0.075 1.000 0.234 0.054 -0.048 -0.141 -0.020 -0.079 -0.033 0.008 0.003 † 0.0001@ 0.060 -0.062 

DDCR -0.037 0.093 1.000 -0.003 -0.113 -0.133 -0.099 -0.030 -0.039 0.055 -0.005 -0.001 0.055 -0.098 

Horiz -0.437 0.098 0.0002@ 1.000 0.115 0.107 0.001@ -0.009 0.015 -0.006 -0.027 0.013 0.010 0.043 

Firmex 0.005 -0.010 -0.099 0.113 1.000 0.403 0.117 0.005 0.032 -0.079 -0.327 0.168 -0.412 -0.169 

Freq 0.028 -0.176 -0.117 0.101 0.406 1.000 0.154 0.159 0.112 -0.038 -0.041 0.014 -0.380 0.197 

Comp 0.019 -0.017 -0.108 0.005 0.111 0.183 1.000 0.044 0.221 -0.267 0.117 0.193 -0.056 -0.013 

Spec 0.040 -0.128 -0.010 -0.009 -0.021 0.146 0.069 1.000 0.169 0.117 0.046 0.023 -0.026 0.115 

Bsize 0.042 -0.045 -0.066 0.016 0.036 0.121 0.423 0.163 1.000 -0.575 0.136 0.183 -0.031 0.089 

Bind -0.016 -0.004 0.100 0.0006@ -0.101 -0.063 -0.363 0.096 -0.565 1.000 -0.090 -0.144 0.028 0.027 

Pin 0.038 -0.035 -0.037 -0.007 -0.266 0.023 0.302 0.101 0.425 -0.258 1.000 -0.067 0.181 0.109 

Pout 0.021 -0.027 -0.035 0.012 0.114 0.067 0.419 0.082 0.485 -0.332 0.234 1.000 -0.050 -0.119 

Change -0.071 0.060 0.045 0.011 -0.410 -0.362 -0.062 -0.015 -0.028 0.035 0.122 -0.052 1.000 -0.009 

Reg 0.083 -0.067 -0.085 0.048 -0.160 0.200 0.015 0.122 0.123 0.037 0.250 0.0012@ -0.009 1.000 
Pearson correlations are shown above the diagonal.  Spearman correlations are shown below the diagonal.  All correlations are significant at the 1% level (Prob > |r| under Ho: Rho = 0) unless otherwise 
indicated. @ indicates no significance, † indicates significance at the 5% level, and # indicates significance at the 10% level.  RFE is the quotient of the absolute forecast error for analyst i in period t for 

company j divided by the mean absolute forecast error, then reduced by 1; (AFEitj/MAFEtj)-1 and then multiplied by -1.  DDSD represents the lag of the standard deviation of the firm's level of 

earnings quality over the prior five consecutive years, DDCR represents the lag of the level of earnings quality for the firm in the year t.  HORIZ is the number of calendar days between the forecast 

issue date for company j and the earnings announcement.  EXP is the natural log of the number of years that analyst i has issued forecasts for firm j prior to year t. COMP is the number of firms followed 

by the analyst in the year in which the forecast is issued. SPEC is the percentage of the firms followed by analyst i that are in the same I/B/E/S industry classification as firm j.  FREQ is the number of 

forecasts made by analyst i for firm j for period t. BSIZE is a percentile ranking of the number of analysts working at the same brokerage as analyst i, relative to other brokerages.  BIND is the 
percentage of analysts that work at analyst i's brokerage that are following firm j's industry in the year t in which the forecast was made.  PIN is the proportion of new analyst assignments from outside 

the brokerage to the total number of analysts who worked for the brokerage during the year t in which the forecast was issued.  POUT is the proportion of analysts that left the brokerage to the total 
number of analysts who worked for the brokerage during the year t in which the forecast was issued.  CHANGE is a dummy variable that takes the value 1 if there has been a change in analyst following 

firm j for a particular brokerage in period t.  REG is a dummy variable that equals 1 if period t is later than year 2000. 
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Results of RFE Tests 

 

Table 3 shows the results of OLS regression for the RFE tests.
12

  The expected coefficient sign is indicated 

next to each variable name.  Recall that higher REF values indicate increased accuracy; therefore positive 

coefficients indicate increased accuracy on the dependent variable.  Recall from the hypothesis development that 

earnings quality could affect financial analyst performance in opposing ways.  Therefore, as indicated above, 

although the earnings quality variables (DDSD or DDCR) are expected to have an impact on RFE, no prediction is 

made as to the direction of that impact.  Signs on the control variables are expected to be consistent with prior 

literature (Barniv et al., 2005; Jacob et al., 1999).  Because regulations are expected to provide more reliable 

information to market participants, a positive sign is predicted on REG thus increasing accuracy.  The results for 

DDSD are presented first.  DDSD represents that standard deviation of residuals produced by estimating the DD02 

model over the most recent five years.  Therefore higher levels of DDSD indicate lower earnings quality.  Thus the 

negative coefficient on DDSD (-1.4967) indicates that higher values of DDSD result in lower accuracy.  The effect 

is significant at the 1 percent level (p < .0001), thus providing evidence to reject the null for H1 and indicating that 

decreased earnings quality results in lower forecast accuracy in the RFE tests.  REG is positive (0.0986) and 

significant (p < .0001) indicating that analysts produce less relative forecast errors in the post regulation period.  

This result is consistent with prior literature (Barber et al., 2006; Barniv et al., 2009; Kadan et al., 2009).  The 

coefficients on all controls are of their predicted direction except for PIN and POUT.  The result for these controls 

seems to indicate that analysts that work in brokerages with high turnover are more accurate than those that work in 

other brokerage firms.  One possible explanation for this result is that firms that engage in high levels of turnover 

activity may do so to maintain better performing analysts.  The last column provides the results for the DDCR tests.  

Note that the coefficient on DDCR is negative (-0.4433) and significant at the 1 percent level (p < .0001), providing 

further evidence to reject H1 and indicating that decreased earnings quality results in lower forecast accuracy.  All 

DDCR control variables are consistent with the DDSD tests.  Overall the results in Table 3 provide evidence to 

reject H1.  These results reinforce the notion found in prior studies that better quality earnings reports do enhance 

the efforts of financial statement users (Barron & Stuerke, 1998; Imhoff & Lobo 1992; Mensah et al., 2004; Payne 

& Robb, 2000).  This finding highlights the importance of high quality earnings to those that depend on financial 

statements for their predictive qualities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
12 Heteroscedasticity-consistent standard errors and t-statistics are used to report the results of all tests of RFE and AFEP. 
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Table 3:  RFE Results for DDSD and DDCR 
RFE = α + β1Earnings Qualitytj+ β2REG + β3HORIZitj + β4EXPitj + β5FREQitj + β6COMPitj + β7SPECitj + β8SIZEitj + β9BINDitj + 

β10PINitj + β11POUTitj + β12CHANGEitj +β13INDit + β14YEARtj+ e 

  
Earnings Quality Variable 

Independent Variable Predicted Sign DDSD 
 

DDCR 

       Intercept 
 

0.3926 *** 
 

0.3982 *** 

Earnings Quality Variable +/- -1.4967 *** 
 

-0.4433 *** 

REG + 0.0986 *** 
 

0.0992 *** 

HORIZ - -0.0021 *** 
 

-0.0021 *** 

FIRMEX + 0.0422 *** 
 

0.0438 *** 

FREQ + 0.0022 *** 
 

0.0038 *** 

COMP - -0.0001 ** 
 

-0.0003 *** 

SPEC +/- 0.0199 *** 
 

0.0222 *** 

BSIZE + 0.0007 *** 
 

0.0007 *** 

BIND + 0.0108 ** 
 

0.0098 ** 

PIN - 0.0328 *** 
 

0.0379 *** 

POUT - 0.0168 *** 
 

0.0168 *** 

CHANGE +/- -0.0744 *** 
 

-0.081 *** 

IND 
 

Included 
  

Included 
 

YEAR 
 

Included 
  

Included 
 

Adjusted R
2
 

 
15.59% 

  
15.32% 

 

F (p value) 
 

2988.42 

(<.0001)   

3014.43 

(<.0001)  

n 
 

582,434 
  

599,797 
 

*, **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  RFE is the quotient of the absolute forecast error for 

analyst i in period t for company j divided by the mean absolute forecast error, then reduced by 1; (AFEitj/MAFEtj)-1 and then multiplied by -1.  
DDSD represents the lag of the standard deviation of the firm's level of earnings quality over the prior five consecutive years, DDCR represents 

the lag of the level of earnings quality for the firm in the year t.  REG is an indicator that takes on a value of 1 if period t is later than year 2000.  

HORIZ is the number of calendar days between the forecast issue date for company j and the earnings announcement. EXP is the ln of the 
number of years that analyst i has issued forecasts for firm j prior to year t.  FREQ is the number of forecasts made by analyst i for firm j for 

period t.  COMP is the number of firms followed by the analyst in the year in which the forecast is issued.  SPEC is the % of the firms followed 

by analyst i that are in the same I/B/E/S industry classification as firm j.  BSIZE is a percentile ranking of the number of analysts working at the 
same brokerage as analyst i, relative to other brokerages.  BIND is the% of analysts that work at analyst i's brokerage that are following firm j's 

industry in the year t in which the forecast was made. PIN is the proportion of new analyst assignments from outside the brokerage to the total 

analysts who worked for the brokerage during the year t in which the forecast was issued.  POUT is the proportion of analysts that left the 
brokerage to the total number of analysts who worked for the brokerage during the year t in which the forecast was issued.  CHANGE is an 

indicator that takes the value 1 if there has been a change in analyst following firm j for a particular brokerage in period t.  IND is a control using 

the I/B/E/S industry classification.  YEAR is a control representing the year in which firm j's earnings are reported. 

 

Descriptive Statistics for AFEP Models 

 

Table 4 provides the descriptive statistics for the AFEP model variables.  Note that similar to prior 

literature (Bae et al., 2008) AFEP has a maximum value of zero and a minimum of -4.75.  The minimum value of 

DDSD is zero indicating that for at least one firm in the sample the residuals were unchanged for the five year 

estimation period.  This indicates that earnings quality remained stable over the years that were measured.  DDCR 

has a minimum value of zero and a mean of 0.0381.  Because the variable is equal to residuals produced from the 

DD02 regression, lower values indicate higher quality accruals.  The minimum DIVERSITY value is zero indicating 

no (or low) uncertainty.  SIZE is the natural log of the firm’s total assets.  Because total assets are reported in 

millions, the mean value of 6.843 reported in the table indicates that the average value of firms’ total assets in the 

sample is $937 million.  Also similar to prior literature (Tan et al., 2011) the No_of_Analysts mean value is 16.43.  

The mean value of NFIRM indicates that average number of companies that were followed by analysts in the sample 

is 10.35, with the minimum of 1 and maximum of 44.  MTB values are percentages in the table; the minimum is 

negative (-74.58) and the maximum is 49.45.  Firm specific experience of analysts (FIRMEX) ranges from zero to 

2.565 years in the dataset and overall general forecasting experience (GENEX) ranges from zero to 18 years.  All 

remaining variables in the table are consistent with Jacob et al. (1999). 
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Table 4:  Descriptive Statistics for Tests of AFEP 
Variable n Mean Std Dev Median Minimum Maximum 

Dependent Variable 

AFEP 
 

604,128 -1.227 1.544 -0.494 -4.75 0 

Earnings Quality Variables 

DDSD 
 

582,385 0.003 0.010 0.00 0.00 0.19 

DDCR 
 

599,672 0.0381 0.041 0.02 0.00 0.47 

Control Variables 

Reg 
 

604,128 0.484 0.500 0.00 0.00 1.00 

Diversity 
 

604,128 0.012 0.082 0.00 0.00 0.64 

Size 
 

604,128 6.843 1.843 6.76 -0.83 12.69 

MTB 
 

601,652 0.921 2.538 24.41 -74.58 49.45 

No_of_Analysts 
 

604,128 16.43 11.35 14.00 1.00 59.00 

Firmex 
 

604,128 0.951 0.708 1.10 0.00 2.565 

Genex 
 

604,128 4.671 3.945 4.00 0.00 18.00 

Bsize 
 

604,128 87.71 17.98 96.00 15.00 99.00 

Nfirm 
 

604,128 10.35 8.777 9.00 1.00 44.00 

Horiz 
 

604,128 201.9 103.3 196.0 0.00 365.0 
AFEP is the absolute forecast accuracy scaled by the most recent stock price in the previous year.  It is computed as the price scaled absolute 

difference between the last forecast issued by analyst j before the earnings announcement date and the actual earnings for firm j in year t 
multiplied by −100.  DDSD represents the lag of the standard deviation of the firm's level of earnings quality over the prior five consecutive 

years, DDCR represents the lag of the level of earnings quality for the firm in the year t.  Reg is an indicator that takes on a value of 1 if period t 

is later than year 2000.  DIVERSITY is the diversity of analysts’ forecasts for firm j in year t computed as the ratio of the standard deviation of 
forecasts for firm j in year t to the product between the absolute value of consensus forecast and the square root of the number of analysts 

following firm j in year t.  SIZE is a control variable representing the size of firm j measured as the natural log of total assets in period t for firm j.  

MTB is the ratio of market value of equity to book value of equity for firm j for year t.  No_of_Analysts is the number of analysts covering firm j 
in year t.  FIRMEX is the ln of the number of years that analyst i has issued forecasts for firm j prior to year t.  GENEX is analyst i’s general 

experience computed as the number of years between analyst j’s first forecast in I/B/E/S and their current forecast in year t.  BSIZE is a percentile 

ranking of the number of analysts working at the same brokerage as analyst i, relative to other brokerages.  NFIRM is the number of firms 
followed by the analyst in the year in which the forecast is issued.  HORIZ is the number of calendar days between the forecast issue date for 

company j and the earnings announcement. 

 

Correlations for AFEP Test Variables 

 

Table 5 gives the correlations for the AFEP model variables.  All correlations are significant at the 1 

percent level unless otherwise indicated in the table.  Pearson correlations are shown above the diagonal and 

Spearman correlations are shown below.  Note that for both Pearson and Spearman, AFEP is negatively and 

significantly associated with both DDSD and DDCR.  This relationship indicates that as earnings quality declines, 

analyst accuracy decreases.  This association is expected given the results of the RFE tests above.  Also note that 

DIVERSITY, which is a measurement of uncertainty (Bae et al., 2008), is also negatively and significantly 

associated with AFEP for both Pearson and Spearman.  This correlation indicates that greater uncertainty is 

associated with lower analyst forecast accuracy.  Also for both Pearson and Spearman GENEX is positively and 

significantly associated with AFEP.  However the result for FIRMEX is counterintuitive; it is negatively and 

significantly associated with AFEP for Spearman but not for Pearson.  No_of_Analysts is positively and 

significantly associated with AFEP for both Pearson and Spearman indicating that a larger following is associated 

with higher forecast accuracy. 
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Table 5  AFEP Test-Pearson/Spearman Correlations 

 
AFEP DDSD DDCR Reg Diversity Size MTB 

No-of-

Analysts 
Firmex Genex Bsize Comp Horiz 

AFEP 1.000 -0.118 -0.123 0.018 -0.157 0.175 0.074 0.201 -0.002@ 0.021 0.006 -0.053 -0.269 

DDSD -0.089 1.000 0.234 -0.062 0.061 -0.280 -0.084 -0.242 -0.048 0.041 -0.032 -0.020 0.054 

DDCR -0.091 0.093 1.000 -0.098 0.062 -0.332 -0.112 -0.149 -0.113 -0.073 -0.039 -0.099 -0.003† 

Reg -0.003† -0.067 -0.085 1.000 0.006 0.164 0.067 0.061 -0.170 0.396 0.089 -0.013 0.043 

Diversity -0.143 0.059 0.068 -0.002@ 1.000 -0.102 -0.032 -0.097 -0.013 -0.008 -0.019 -0.015 0.017 

Size 0.159 -0.289 -0.314 0.160 -0.109 1.000 0.490 0.674 0.219 0.171 0.125 0.114 0.002# 

MTB 0.068 -0.239 -0.248 0.122 -0.071 0.781 1.000 0.430 0.077 0.051 0.011@ -0.010 -0.004 

No_of_Analysts 0.203 -0.375 -0.162 0.098 -0.124 0.704 0.619 1.000 0.142 0.058 0.046 0.052 0.007 

Firmex -0.008 -0.010 -0.099 -0.160 -0.016 0.220 0.184 0.148 1.000 0.194 0.031 0.117 0.115 

Genex 0.018 0.091 -0.053 0.350 -0.011 0.161 0.107 0.076 0.235 1.000 0.073 0.129 0.063 

Bsize 0.000@ -0.045 -0.066 0.123 -0.021 0.178 0.075 0.083 0.036 0.123 1.000 0.221 0.015 

Comp -0.067 -0.017 -0.108 0.015 -0.015 0.124 0.050 0.077 0.111 0.168 0.423 1.000 0.001@ 

Horiz -0.320 0.098 0.000@ 0.048 0.017 0.000@ 0.005 0.006 0.113 0.074 0.016 0.005 1.000 
Pearson correlations are shown above the diagonal.  Spearman correlations are shown below the diagonal.  All correlations are significant at the 1% level (Prob > |r| under Ho: Rho = 0) unless otherwise 

indicated. @ indicates no significance, † indicates significance at the 5% level, and # indicates significance at the 10% level.  AFEP is the absolute forecast accuracy scaled by the most recent stock price 
in the previous year.  It is computed as the price scaled absolute difference between the last forecast issued by analyst j before the earnings announcement date and the actual earnings for firm j in year t 

multiplied by −100.  DDSD represents the lag of the standard deviation of the firm's level of earnings quality over the prior five consecutive years, DDCR represents the lag of the level of earnings 

quality for the firm in the year t.  Reg is an indicator that takes on a value of 1 if period t is later than year 2000.  DIVERSITY is the diversity of analysts’ forecasts for firm j in year t computed as the 
ratio of the standard deviation of forecasts for firm j in year t to the product between the absolute value of consensus forecast and the square root of the number of analysts following firm j in year t.  

SIZE is a control variable representing the size of firm j measured as the natural log of total assets in period t for firm j.  MTB is the ratio of market value of equity to book value of equity for firm j for 

year t.  No_of_Analysts is the number of analysts covering firm j in year t.  FIRMEX is the ln of the number of years that analyst i has issued forecasts for firm j prior to year t.  GENEX is analyst i’s 
general experience computed as the number of years between analyst j’s first forecast in I/B/E/S and their current forecast in year t.  BSIZE is a percentile ranking of the number of analysts working at 

the same brokerage as analyst i, relative to other brokerages.  NFIRM is the number of firms followed by the analyst in the year in which the forecast is issued.  HORIZ is the number of calendar days 

between the forecast issue date for company j and the earnings announcement. 
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Results of AFEP Tests 
 

Table 6 shows the results of OLS regression for the AFEP tests.  Note that the expected coefficient sign is 

indicated next to each variable in the table.  DDSD results are presented first.  The coefficient on DDSD is negative 

(-7.942) and significant at the 1 percent level, thus providing evidence for rejecting H2 and indicating that lower 

earnings quality reduces forecast accuracy.  The negative sign indicates that larger values of DDSD have a 

decreasing effect on AFEP.  This result is consistent with the RFE tests above and provides further confirmation that 

low earnings quality diminishes the accuracy of financial analysts.  The results for MTB and FIRMEX are not 

consistent with expectations.  Although diminutive, the coefficient of MTB is negative (-0.0003) indicating that 

large market-to-book ratios reduce forecast accuracy in the sample.  FIRMEX is negative and significant in the 

model suggesting that higher levels of firm specific experience reduce forecast accuracy.  One possible explanation 

for this result is that as experienced analysts cultivate long-term associations with a company’s management, they 

may not feel comfortable disputing management’s predictions and thus issue optimistic forecasts (Cowen et al., 

2006).  GENEX is positive and significant indicating that analysts in the sample with more overall experience 

produce more accurate forecasts.  Consistent with Bae et al. (2008) the coefficient on DIVERSITY is negative and 

significant.   The coefficients on all remaining control variables result in their expected signs.  The results for the 

tests of DDCR are presented next in the table and are consistent with the DDSD results.  Note that DDCR is 

negative (-3.421) and significant at the 1 percent level.  Recall that lower values of AFEP indicate reduced accuracy 

(greater absolute forecast errors).  This result provides additional support for rejecting H2, and indicates that lower 

earnings quality is associated with greater absolute forecast errors.  The coefficients on the remaining controls are 

consistent with the DDSD results.  Overall Table 6 provides support to reject H2, and is consistent with the results 

of the RFE tests above.  Specifically earnings quality, whether measured as DDSD or DDCR, has a significant 

impact on the accuracy of financial analysts’ earnings forecasts.  This result is robust to both the RFE and AFEP 

measurements of earnings quality. 
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Table 6:  AFEP Results for DDSD and DDCR 

AFEP = α +β1DDSDtj + β2REG  +β3DIVERSITYtj +β4SIZEtj +β5MTBtj +β6No_of_Analysts tj  + β7FIRMEXitj + β8GENEXitj 

+ β9BSIZEitj + β10NFIRMitj + β11HORIZitj + β12INDit  + β13YEARtj + e 

  
Earnings Quality Variable 

Independent Variable Predicted Sign DDSD 
 

DDCR 

       Intercept 
 

-1.320 *** 
 

-1.168 *** 

Earnings Quality Variable +/- -7.942 *** 
 

-3.421 *** 

REG + 0.160 *** 
 

0.172 *** 

DIVERSITY +/- -2.277 *** 
 

-2.268 *** 

SIZE + 0.112 *** 
 

0.098 *** 

MTB + -0.0003 *** 
 

-0.0003 *** 

No_of_Analysts + 0.017 *** 
 

0.019 *** 

FIRMEX + -0.012 *** 
 

-0.020 *** 

GENEX + 0.010 *** 
 

0.0084 *** 

BSIZE + 0.0006 *** 
 

0.0007 *** 

NFIRM - -0.006 *** 
 

-0.006 *** 

HORIZ - -0.004 *** 
 

-0.004 *** 

IND 
 

Included 
  

Included 
 

YEAR 
 

Included 
  

Included 
 

Adjusted R2 
 

19.26% 
  

19.78% 
 

F (p value) 
 

3955.3  

(< .0001)   

4207.83 

(< .0001)  

n 
 

580,075 
  

597,249 
 

*, **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  AFEP is the absolute forecast accuracy scaled by the most 

recent stock price in the previous year. It is computed as the price scaled absolute difference between the last forecast issued by analyst j before 
the earnings announcement date and the actual earnings for firm j in year t multiplied by −100.  DDSD represents the lag of the standard 

deviation of the firm's level of earnings quality over the prior five consecutive years, DDCR represents the lag of the level of earnings quality for 

the firm in the year t.  REG is an indicator that takes on a value of 1 if period t is later than year 2000.  DIVERSITY is the diversity of analysts’ 
forecasts for firm j in year t computed as the ratio of the standard deviation of forecasts for firm j in year t to the product between the absolute 

value of consensus forecast and the square root of the number of analysts following firm j in year t.  SIZE is a control variable representing the 

size of firm j measured as the natural log of total assets in period t for firm j.  MTB is the ratio of market value of equity to book value of equity 
for firm j for year t.  No_of_Analysts is the number of analysts covering firm j in year t.  FIRMEX is the ln of the number of years that analyst i 

has issued forecasts for firm j prior to year t.  GENEX is analyst i’s general experience computed as the number of years between analyst j’s first 

forecast in I/B/E/S and their current forecast in year t.  BSIZE is a percentile ranking of the number of analysts working at the same brokerage as 
analyst i, relative to other brokerages.  NFIRM is the number of firms followed by the analyst in the year in which the forecast is issued.  HORIZ 

is the number of calendar days between the forecast issue date for company j and the earnings announcement.  IND is a control using the I/B/E/S 

industry classification.  YEAR is a control representing the year in which firm j's earnings are reported. 

 

V. SUMMARY & CONCLUSION 

 

This study investigates whether there is an empirical association between the quality of reported earnings 

and financial analyst forecast accuracy.  Because literature cited reveals that individual financial analysts bring 

different abilities to the forecasting task, it is anticipated that analysts’ forecast performance relative to each other 

will be affected by variations in earnings quality.  Research also shows that firm summary performance measures 

are more value relevant when they directly and quickly capture information about firms’ cash flows.  To examine 

the relationship of forecast accuracy with earnings quality, this study uses accuracy specifications of the individual 

analyst relative to other analysts (RFE), and relative to actual reported earnings (AFEP).  The tests are performed 

using two specifications of earnings quality that track accruals to cash flows.  The results indicate that accuracy 

diminishes when earnings quality is low.  These results are consistent with extant literature that indicates that low 

quality earnings, and user uncertainty that it could cause, reduces analyst performance.  Two caveats should be 

mentioned.  First, the DD02 model is designed to isolate (as the residual term in the model) any changes in working 

capital that do not track to cash flows in a three year time period centered around the current period.  The residual is 

then considered to be a measurement of low quality accruals.  However, it is important to recognize that accruals 

that mature to cash flows over a slightly longer horizon would be considered of low quality when they may in fact 

enhance the usefulness of reported earnings.  Second, recall that the DDSD variable represents the smoothness of 

earnings quality values over a several year period.  As such, the earnings of a firm with several years of low quality 

reports that exhibit very minor deviation from year to year would be assessed as high quality for DDSD, although it 

is unlikely that low quality earnings would persist over the five year period used in this study.  The results of this 
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study indicate that the level of earnings quality has a significant impact on the accuracy of financial analysts; 

specifically that high quality earnings enhance forecast accuracy.  Market participants will benefit from these results 

by gaining incremental knowledge of the determinants of financial analyst forecast accuracy and by gaining further 

insight of how management’s accounting choices and estimates affect financial analysts’ forecasting performance. 
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